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Abstract—An adjoint-variable approach to frequency-domain
design sensitivity analysis is proposed for the optimization of
high-frequency structures with full-wave electromagnetic solvers.
We investigate sensitivity estimations based on a feasible per-
turbation technique which is versatile and requires only minor
modifications of existing analysis algorithms. It extends the
feasible adjoint-sensitivity technique previously applied in non-
linear microwave circuits to full-wave electromagnetic analysis.
The solution to the adjoint problem is obtained with very little
overhead once the original problem is solved. The gradient of
the objective function is consequently computed through a single
analysis regardless of the number of the design parameters. The
concept is illustrated through the sensitivity analysis and the
design of a Yagi–Uda array and a rectangular patch antenna using
suitable method of moments simulators.

Index Terms—Adjoint techniques, antenna design, com-
puter-aided design, design automation, frequency-domain
analysis, optimization, sensitivity.

I. INTRODUCTION

T HE purpose of system design sensitivity analysis is to eval-
uate the sensitivity of the response of a system to variations

of its design parameters. The design sensitivity is represented by
the gradient of a given response function in the design parameter
space. In high-frequency structure analysis, the design param-
eters typically describe the structure’s geometry and the elec-
tromagnetic (EM) properties of the media involved. The system
response may be defined as 1) a distributed response represented
by the state variables such as current or field distributions; 2) a
set of engineering parameters describing the structure’s perfor-
mance such as or parameters; and 3) a single scalar func-
tion, which represents some kind of a global performance mea-
sure, such as the objective function in an optimization problem.
Design sensitivity information is crucial in a number of en-
gineering problems such as optimization, statistical and yield
analysis, as well as tolerance analysis. In this paper, we focus
on the implementation of the adjoint-based design sensitivity
analysis for gradient optimization with full-wave frequency do-
main EM solvers.
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The adjoint-variable method (AVM) for design sensitivity
analysis is an efficient design approach to complex linear
and nonlinear problems. It has been proposed in areas such
as structural design [1], circuit theory [2]–[7], control theory,
etc. Adjoint sensitivities for circuit computer-aided design
(CAD) can be found even in undergraduate courses [8]. Adjoint
techniques have already been implemented in commercial
structural design software based on the finite-element method
(FEM) [1]. At the same time, the AVM has attracted very little
attention in full-wave EM analysis with applications almost
exclusively limited to finite-element analysis [9]–[11].

The adjoint-based design sensitivity analysis of microwave
structures has historically been formulated in terms of circuit
concepts through Tellegen’s theorem rather than field concepts.
It is referred to as theadjoint network method. The first ap-
plications of the adjoint network method to microwave circuit
problems were published in the early 1970s when network sen-
sitivities were calculated on both voltage–current [3]–[5], and

-parameter bases [6], [12], [13]. Later, Alessandriet al. [14]
applied the adjoint network method to the analysis of microwave
circuits whose subnetworks were represented byparameters.
Typically, the adjoint network method considers the sensitivity
of a response with respect to a single state variable [4], which
makes its applications problem specific. It is not immediately
obvious how it can be utilized in a full-wave analysis.

Recently, an exact sensitivity technique was proposed for ap-
plications with the method of moments (MoM) [15] and the
boundary layer concept was proposed to reduce the computa-
tional load associated with overhead computations related to
derivative estimations. In effect, this technique is based on the
direct differentiation method[1]—an efficient approach to the
sensitivity analysis of distributed response functions. This tech-
nique stops short of defining and exploiting the concept of ad-
joint sensitivities.

We review the mathematical background of the AVM and
discuss feasible implementations in the sensitivity analysis of
linear, time-harmonic EM problems. Three major issues are dis-
cussed: 1) the adjoint problem; 2) the procedure to efficiently
evaluate the gradient of the response function; and 3) the formu-
lation of the objective function in adjoint-based gradient opti-
mization. The proposed approach can substantially increase the
efficiency of current CAD tools based on full-wave frequency
domain analysis, as it allows the computation of the objective
function and its gradient through a single analysis. Unlike pre-
vious work on EM-based exact sensitivities, the algorithm is not
limited to a specific numerical technique, or to a specific class
of high-frequency structures, or to a specific type of response
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functions. It constitutes a versatile CAD approach which is com-
patible with existing EM solvers and which requires only minor
additions to their respective software.

II. OVERVIEW OF THE ADJOINT TECHNIQUES FOR

LINEAR SYSTEMS

Here, we review the basic concepts of the AVM for design
sensitivity analysis in the case of a general linear problem [1],
[7]. The importance of this discussion arises from the fact that
most full-wave solvers reduce a theoretical model of the EM
problem to a system of linear equations through a variety of dis-
cretization techniques. Neither the theoretical models nor the
discretization techniques are discussed hereafter, because the
feasible adjoint sensitivity technique (FAST) does not require
analytical derivatives of the coefficients of the matrices associ-
ated with a specific computational EM method. We should note
that the AVM can be extended to the design sensitivity analysis
of nonlinear systems. Nonlinear circuit sensitivities and feasible
approaches to their estimation are discussed in [8] and [16].

A. Sensitivity of the Solution via Direct Differentiation

Using notations typical for the MoM analysis, a linear EM
problem is represented by

(1)

Here, is the vector of design parameters,is the state-vari-
able vector, e.g., complex currents or current densities in the
MoM, or field distribution in the FEM, and is the global ex-
citation vector which, in general, depends on the sources and the
boundary conditions of the problem. Since thematrix depends
on the structure’s geometry and materials, the solutionis an
implicit function of the design parameters. In the following
discussion, the sensitivity of the matrix with respect to the
design parametersplays an important role. The coefficients
may be explicit functions of the discretization grid nodes, as is
the case in the FEM. This can be advantageous, since it allows
the computation of the exact sensitivities of thematrix with
respect to the node’s coordinates. In MoM solvers, however, the

coefficients are integrals of a specific Green’s function, which
may depend on the user-defined design parameters in a compli-
cated way. In such a case, it is preferable to approximate the
matrix sensitivities using finite differences, as we discuss later.
This ensures the versatility and feasibility of the proposed de-
sign-sensitivity-analysis technique.

We define a general function , which is there-
sponse functionof the linear system. This function has to be
differentiable in all its arguments. It may have explicit depen-
dence on the design parameters. It depends on the solution

of (1), and therefore, always has an implicit dependence on
. The objective is to determine the sensitivity of the response

function with respect to the design parameters, i.e.,

subject to (2)

where is the row operator

(3)

Assuming that the matrix is not singular, is obtained
from (1) as

(4)

where , and are column vectors, e.g.,

(5)

In , the solution of (1) at the current design () is held
constant during the differentiation. For clarity, (4) is rewritten
as

(6)

Equation (4) is the basis of thedirect differentiation method[1].
It provides the means of efficient calculation of the gradient of
the state-variable vector. There is no need for additionalma-
trix LU factorization, since this has already been done at the
analysis stage of the current design. The overhead due to the
computation of , in addition to the solution of (1), is as-
sociated with: 1) the computation of thematrix sensitivities

and 2) back substitutions of the
LU-factored matrix in (6).

B. Sensitivity of the Response Function Using the Adjoint
Solution

The solution of (6) can be subsequently used to calculate the
exact sensitivities of by the substitution of the com-
puted state-variable sensitivities into

(7)

where is a row operator analogous to [see (3)]. The gra-
dient reflects the explicit dependence of on .

In an optimization problem, however, we are interested in the
sensitivity of the response function , rather than the sensi-
tivity of the state-variables . In such a case, the AVM pro-
vides the most computationally efficient sensitivity estimation.
Substituting (4) into (7) leads to

(8)

Here, the vector

(9)

is introduced. It is a solution to

(10)

and is referred to as theadjoint variablevector. The right-hand
side of (10)

(11)

is theadjoint excitation, which is the gradient of the response
function in the state-variable space. Equation (10) describes the
so-calledadjoint problem. The factored matrix is obtained
easily from the factored matrix of the original system. The
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response sensitivities can now be computed in terms of the orig-
inal solution and the adjoint solution as

(12)

Equations (10) and (12) form the basis of the AVM.

C. Computational Advantages and Feasibility of the AVM

In the AVM, the overhead due to the computation of in
addition to the solution of (1) is associated with: 1) the com-
putation of the matrix sensitivities
needed in (12) and 2) one back substitution of theLU-factored

matrix in (9).
The AVM has significant computational advantage in

comparison with the traditional calculation of the sensitivities
through a finite-difference approach (FDA). The FDA applies
finite differences directly to the gradient of the response func-
tion. For example, the forward finite-difference approximation
of a response derivative is

(13)
where is the value of the design parameter at the cur-
rent ( th) design iteration and is a specified perturbation.
In this case, the FDA performs full analyses in order
to generate both the response function and its sensitivity. This
involves matrix fills, factorizations, and back substitu-
tions in order to derive all solutions to (1). Obviously, the
FDA is computationally inefficient in problems involving mul-
tiple-design parameters. It becomes even more computationally
demanding if higher order approximations of the sensitivities
are used. In contrast, the AVM generates the response and its
sensitivities through a single analysis, regardless of the number
of design parameters. The feasible approach presented here
requires matrix fills, one matrix factorization, and
one additioinal back substitution.

The AVM has better computational efficiency in comparison
with the direct differentiation method as well. In the direct dif-
ferentiation method, according to (6),back substitutions of
the factored matrix are needed to compute and, subse-
quently, to obtain . In the AVM, according to (10) and (12),
there is only one back substitution needed regardless of: the
one used to compute.

The advantage of the FDA is its simplicity and the ease of
implementation with any EM solver. This makes it the most
popular (if not the only) approach currently used in commer-
cial high-frequency CAD tools together with other more sophis-
ticated (quadratic and cubic) locally valid approximations of
the response used to obtain sensitivity estimates. Here, we pro-
pose a feasible technique based on adjoint sensitivities, which
is equally easy to implement and in the same time retains high
computational efficiency. From (10) and (12), it is clear that
there are two types of derivatives involved in the computation
of through the AVM; namely, the matrices

in and the adjoint excitation .
The matrices may be analytically
available. However, as discussed before, their evaluation is not

only solver specific, but also far from trivial. Besides, the ana-
lytical evaluation of the matrix sensitivities does not improve
the computational efficiency in comparison with the finite-dif-
ference approximations [16]. These
approximations require only minor simple modifications in an
existing EM code, which do not depend on the nature of the
numerical algorithm. The important issue here is whether these
approximations can affect the accuracy of the sensitivity esti-
mation via the AVM. As we demonstrate later, the accuracy of
the sensitivity estimation via (12) is preserved. This is due to the
nearly linear dependence of the majority of the elements of the

matrix on a geometrical design parameterfor small pertur-
bations ( from 1% to 5%) (see also [16]).

The construction of the adjoint problem requires the compu-
tation of the adjoint excitation vector , which de-
pends entirely on the way the user defines the response function

. In general, it is desirable that is analyt-
ically differentiable in because the accu-
racy of the adjoint solution through (10) depends strongly on
the accuracy of . Our numerical tests show that inaccurate fi-
nite-difference approximations of may result in deterioration
of the sensitivity analysis via (10) and (12).

III. D EFINING AN OBJECTIVE FUNCTION

An objective function may be a suitable leastth or min-
imax real valued function [3], [5] of the state-variables

. The response in the frequency domain analysis is
typically a complex valued function. The complex error
containing sampled frequency domain responses can, for ex-
ample, appear in a leastth objective function as

(14)

where denotes theth frequency of interest. Then [3]

(15)

It is recommended that and, therefore, be analytically
differentiable in , so that the adjoint excita-
tion is computed accurately.

IV. RESULTS AND DISCUSSION

A. Finite-Difference Approximations and the Accuracy of the
Adjoint Sensitivity Analysis

We illustrate the adjoint sensitivity analysis through the
computation of the input impedance and gain sensitivities
of a Yagi–Uda array whose nominal geometry is shown in
Fig. 1. The analysis is based on Pocklington’s equation. The
discretization is carried out via the MoM using pulse expansion
functions and a point matching technique. The complex system
of (1) is reduced to a system of real-valued equations

(16)

where and .
The symmetry of the structure is used and, thus, only half
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Fig. 1. Geometry of the Yagi–Uda array.

of the array is actually discretized. Every half-array element
is discretized into 45 segments. All design parameters in
the Yagi–Uda array example are derived by normalizing the
geometrical dimensions with respect to the wavelength, e.g.,

, where is the wavelength.
We show the results for the derivative of the input impedance

with respect to the separation distance, . It is first
computed with the FDA using central finite differences with 1%
perturbation of the current value of the design parameter

(17)

Here, is the current value of the design parameter.
Second, we compute using the AVM with analyt-
ically calculated adjoint excitation. In this case, the response
function is a complex function which depends on a single
state variable, namely, the phasor of the current at the base of the
driver element , where is the index of the respective subsec-
tion. The sensitivities of and
are evaluated. Since the driver is excited with an input voltage
whose phasor is set as V, . The adjoint cur-
rents are computed from

(18)

When the sensitivity of is estimated, the adjoint excitation
is

(19)

The input resistance sensitivity is finally computed as

(20)

Fig. 2. Input resistance of the Yagi–Uda array and its sensitivity with respect
to the normalized separations .

Fig. 3. Input reactance of the Yagi–Uda array and its sensitivity with respect
to the normalized separations .

The sensitivity is calculated in an analogous manner. No-
tice that has been set equal to zero as the input
impedance has no explicit dependence on the separation.
The excitation vector does not depend on either, which sets

.
The matrix is calculated in three different ways:

1) analytically; 2) with forward finite differences using 1% per-
turbation; and 3) with forward finite differences using 5% per-
turbation. The input resistance and reactance sensitivities com-
puted with the FDA and with the three implementations of the
AVM are plotted in Figs. 2 and 3, respectively. The excellent
match between the results obtained with the FDA (central fi-
nite differences) and the results of the AVM with the analytical

matrix confirms the validity and the accuracy of the
proposed technique. It is also evident that the FAST, which relies
on the finite-difference approximation of the matrices ,
yields very accurate results. At the same time, its implementa-
tion is straightforward as one does not need the derivatives of
the specific Green’s function with respect to a given design pa-
rameter.
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Fig. 4. Gain and gain sensitivity of the Yagi–Uda array with respect to the
separations .

Next, we compute the sensitivities of the antenna gain
with respect to the normalized separation distances

and investigate the influence of the finite-difference
approximations of the adjoint excitation on the overall accu-
racy of the sensitivity estimation. The sensitivities are computed
for a range of values of while keeping the rest of the de-
sign parameters at the following fixed values: ,

, , , and
. We first obtain a reference

gain sensitivity solution applying the FDA with 1% perturba-
tions for each normalized separation distance. The antenna gain

and its derivative with respect to the normalized separation
as a function of are plotted in Fig. 4. The gain sensitiv-

ities are next estimated with the AVM.
The response function in this case is the gain. Thus, the

adjoint excitation vector is

(21)

This time, the adjoint excitation (21) has no zero elements be-
cause the antenna gain depends on all state variables. The ad-
joint variable vector is a solution to

(22)

According to (12), the sensitivity with respect to a
given separation is computed by

(23)

Notice that the excitation vector is independent of the sepa-
ration distances; thus, . The gain has an explicit
dependence on the separations because they affect the relative
positions of the currents which generate the radiated far field.

Fig. 5. Gain sensitivity of the Yagi–Uda array with respect to the separation
s calculated with the AVM using�s = 0:01s perturbations in the
calculation of the�Z=�s matrix. Adjoint excitation V̂ is calculated
analytically and with finite differences.

Thus, the derivative is nonzero and is evaluated using
finite differences (while keeping the current solutionfixed).

The adjoint excitation (21) is first calculated using analytical
derivatives. The result is substituted in (22) to produce the ad-
joint variable-solution . Finally, the sensitivities

are calculated via (23). The result for is
plotted in Fig. 4, together with the reference solution. Both sen-
sitivity curves are in excellent agreement. This shows that the
finite-difference approximations of the matrix sensitivities in
the AVM do not lead to deterioration of the accuracy of the re-
sponse sensitivity estimation. Similar results are observed for
the gain sensitivity, as well as for the antenna input impedance
sensitivities, with respect to any other design parameter.

We now investigate the possibility of applying finite differ-
ences to the calculation of the adjoint excitation (21). Instead
of using the analytical gradient , we compute the adjoint
excitation as

(24)

applying perturbations to the state variables as: 1)
, and 2)
, . The

gain sensitivity results are plotted in Fig. 5 together
with the sensitivity generated by the adjoint technique, which
uses the analytical gradient . It is obvious that the accu-
racy of the sensitivity estimation is strongly affected by the fi-
nite-difference approximation of the adjoint excitation. More-
over, it shows poor convergence since the deviation from the
reference solution is stronger for smaller (1%) perturbations of
the state variables. This is associated with truncation errors in
the floating point representation of numbers. The largest differ-
ences between the adjoint excitation values generated by (21)
and by (24) appear where the state variables have their smallest
absolute values (below 10 relative to maximum). In all nu-
merical examples, single precision is used.
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Fig. 6. Progress of the objective function and the input impedance of the
Yagi–Uda design.

Fig. 7. Geometry of the rectangular patch antenna.

We should note that the finite-difference approximation of
the adjoint excitation does not necessarily lead to deterioration
of the sensitivity analysis. For example, applying finite differ-
ences to the adjoint excitation in (18) for the estimation of the
input impedance sensitivities yields very accurate results. This
is typical for the cases where the response function depends on
a single state variable and is thus not prone to roundoff errors.
Nonetheless, it is recommended that the user formulates the re-
sponse function in such a way that it is analytically or semiana-
lytically differentiable in all state variables.

B. Optimization of the Input Impedance of a Yagi–Uda Array

We use the FAST described above to optimize the input
impedance of the Yagi–Uda array shown in Fig. 1. The objec-
tive function is defined as

(25)

where and is the input impedance of the an-
tenna. The vector of design parameters is . The
objective function (25) depends on a single complex-valued cur-
rent, the current at the driver’s base. This dependence fol-
lows from , where V . The complex error

Fig. 8. Progress of the objective function and the input impedance of the patch
antenna design.

Fig. 9. Progress of the objective function during the gain optimization of the
Yagi–Uda array.

is computed at a single frequency, which de-
termines the wavelength used to normalize the geometrical de-
sign parameters. Using (15), the gradient of the objective func-
tion is obtained as

(26)

The derivatives of the complex error functionare easily iden-
tified as

(27)

where

and (28)

The respective derivatives of have been already given in
(19). Thus, the adjoint excitation has only two nonzero ele-
ments corresponding to and given
by (26).
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TABLE I
DESIGN PARAMETERS, INPUT IMPEDANCE, AND GAIN OF THE YAGI–UDA ARRAY

Fig. 10. Progress of the objective function during the optimization of the input
impedance and the gain of the Yagi–Uda array.

The result of the optimization of the input impedance of the
Yagi–Uda array is shown in Fig. 6. The optimal design is ob-
tained as . At each iteration, only oneLU
factorization of the matrix is performed. In addition, one back
substitution of theLU-factored matrix is needed in order to
compute the adjoint vector.

C. Input Impedance of a Rectangular Patch Antenna

The adjoint sensitivity technique is applied to the optimiza-
tion of a microstrip-fed rectangular patch antenna with an inset,
for an input impedance of 50 at the operating frequency

GHz. The geometry of the structure is given in Fig. 7. The an-
tenna is printed on a dielectric substrate of height mm
and relative permittivity . The design parameters are
the length of the patch, its width , and the depth of the inset

. The objective function is formulated as

(29)

where . The analysis is based on the electric field
integral equation. The discretization uses triangular basis func-
tions [17]. The progress of the design during the optimization
is shown in Fig. 8. The initial design is mm .
The optimal design is mm .

D. Maximum Gain of the Yagi–Uda Array

The gain of the Yagi–Uda antenna of Fig. 1 is optimized by
maximizing the radiation intensity in the direction of maximum
radiation

(30)

where is the only nonzero component of the mag-
netic vector potential generated by the antenna. The design
space is . The initial design is the
one optimized for , with ,

and . The optimal design
is . The gain of the antenna
at the initial design is (11.06 dB). After the
optimization is completed, (11.78 dB). The
progress of the objective function is given in Fig. 9.

E. Yagi–Uda Array Design for Optimum Input Impedance
and Gain

We now consider a more practical design problem where both
the input impedance and the gain of the Yagi–Uda array are to
be optimized. The design parameters are all five separation dis-
tances, i.e., . As an initial design, we
use the optimized array from the previous example where

and . The
objective function is now formulated as

(31)
The values of the design parameters, as well as the values of
the input impedance and the gain at each design iteration, are
listed in Table I. The progress of the objective function is given
in Fig. 10.

V. CONCLUSIONS

A feasible AVM to design sensitivity analysis with frequency-
domain full-wave EM solvers is proposed. A theory and pos-
sible implementations of adjoint-based gradient optimization of
high-frequency structures are presented. Important issues re-
lated to the formulation of the adjoint system, the accuracy of
the sensitivity estimation, and the objective functions are dis-
cussed and illustrated through MoM analysis.
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